

Load-Distributed Ground Anchors

Andrew Baxter, PE, PG Schnabel Engineering

Traditional Ground Anchor

Pre-Stressed Anchors or Tiebacks

From FHWA GEC No.4

Traditional Ground Antonor

Components of Traditional Ground Anchor

From FHWA GEC No.4

Traditional Fixed Length Ground Anchor

Grouted Bond Length

Iradiional Ground Anchor

Load Transfer of Traditional Tiebacks

Courtesy of SAMWOO

Efficiency of Ground Anchor Bond Zones

Effciency of Grouno Anchor Bond Zones

- Function of:
 - Strain softening behavior of the soil
 - Stiffness of soil and anchor
 - Fixed length of the bond zone

$$f_{eff} = 1.6 * (\frac{L_{fix}}{L_0})^{-0.57}$$

Traditional Tebacks Vs. LDA

Load Transfer of LDCAs

Courtesy of SAMWOO

Installation Method

Load Testing Hydraulic Jack System

Traditional Tiebacks Vs. LDCA

Components of LDCAs

Tractional Tebacks Vs. LDCA

Types of LDCAs

Single Strand Body

Double Strand Body

Triple Strand Body

Courtesy of SAMWOO

Design, installation and Testing Recommendations

Installation Procedure

Test Site

Testing Procedures and Equipment

<mark>Tracitional Tiebacks Vs. LDCA</mark>

- More-improved component combination method
- Excellent structure for stand protection and prevention of grout infiltrarion

Temporary and Removable

POST-TENSIONING INSTITUTE ®
Stressing the Stronger Concrete Solution

- Two Stages
 - Stage 1, to familiarize with the anchors, installation procedures, and testing procedures
 - Reston Station, VA
 - Tysons Corner, VA
 - Stage 2, Large Scale Testing at Auburn University, Spring Villa Geotechnical Test Site

- Stage 1
 - Evaluate the use Different drilling methods
 - Evaluate tendon installation procedures
 - Evaluate Post-Grouting
 - Evaluate use of conventional center hole jack

- Stage 2 aimed at developing design criteria:
 - Using a standard installation procedure
 - Using a standard testing procedure
 - Compare the performance of removable LDCAs with equivalent traditional tiebacks
 - Evaluate the effects of the grout mix strength
 - Evaluate the effects of body spacing
 - Evaluate and determine the extent of the bond length

Tie #	Type	#0.6"φ Strands	Borehole Diameter (inches)	Grout W/C	Grouting Method	LDCA Body Type	Lu (ft)	S (ft)	Lb (ft)
1	LDCA	3	7	0.45	Tremie	Single	15	6	19
2	LDCA	3	7	0.45	Tremie	Single	15	9	28
3	LDCA	3	7	0.45	Tremie	Single	15	6	19
4	LDCA	3	7	0.45	Tremie	Single	15	9	28
5	LDCA	3	7	0.60	Tremie	Single	15	6	19
6	LDCA	3	7	0.60	Tremie	Single	15	9	28
7	LDCA	2	7	0.45	Tremie	Double	15	6	7
а	LCTA	3	7	0.45	Tremie	NA	15	NA	18
b	LCTA	3	7	0.45	Tremie	NA	15	NA	27
С	LCTA	3	7	0.60	Tremie	NA	15	NA	18
Ó.	LCTA	3	7	0.60	Tremie	NA	15	NA	27
е	LCTA	3	7	0.60	Post- grouted	NA	15	NA	10
f	LCTA	3	7	0.60	Post- grouted	NA	15	NA	10

POST-TENSIONING INSTITUTE ® Stressing the Stronger Concrete Solution

Instrumentation

Testing Procedure

Testing Results

Tie #	Design Load (kip)	Max. Test Load (kip)	Maximum Elongation (inches)	Elastic Elongation (inches)	Residual Elongation (inches)	Failure Mode	Average Mobilized Bond Strength ⁽	
	40-	400	1 = 0				psi	kip/ft
1	105	100	4.73	2.39	2.34	Pull-out	19.9	5.3
2	105	110	6.75	2.73	4.02	Pull-out	14.9	3.9
3	105	140	3.89	3.23	0.66	Strand Wire Broke	27.9	7.4
4	105	127	4.63	3.73	0.90	Strand Wire Broke	17.2	4.5
5	105	103	3.89	1.97	1.92	Pull-out	20.5	5.4
6	105	135	4.97	3.93	1.04	Pull-out	18.3	4.8
7	70	65	3.50	1.68	1.82	Pull-out	35.2	9.3
а	105	106	3.67	1.50	2.17	Pull-out	21.1	5.6
b	105	125	4.16	1.82	2.34	Pull-out	16.9	4.5
С	105	106	3.59	1.65	1.94	Pull-out	21.1	5.6
d	105	140	3.70	NA	NA	Passed	18.9	5.0
е	105	121	2.53	1.40	1.13	Creep	45.9	12.1
f	105	121	2.44	1.51	0.93	Passed	45.9	12.1

Load Transfer

Load Transfer

Conclusions

General Conclusions

- LDA verses traditional anchors can provide significantly higher capacities in soft ground formations.
- LD Compression Anchors with short spacing have comparable capacity values with LD Tension Anchors

Anchor Bond Length (m)

Questions?

Andrew Baxter, PE, PG Schnabel Engineering

