815 Pine

Seattle's Tallest Residential Tower

STRUCTURAL ENGINEERS

Cary Kopczynski, PE, SE MAY 6th, 2014

POST-TENSIONING INSTITUTE ® Stressing the Stronger Concrete Solution

.

815 PINE

SEATTLE, WASHINGTON

Stressing the Stronger Concrete Solution

815 PINE

- 42-STORY RESIDENTIAL TOWER WITH 386 UNITS
- FOUR LEVELS OF PARKING ABOVE GRADE, FIVE LEVELS BELOW
- 440 FOOT STRUCTURE
- 490,000 SQUARE FEET
- EXPECTED TO OPEN IN NOVEMBER 2014
- TARGETING LEED SILVER CERTIFICATION

815 PINE

- 7 ¹/₂" POST-TENSIONED FLAT PLATES
- HIGHLY EFFICIENT CORE-WALL SEISMIC SYSTEM
- COLUMN SIZES ARE CONSTANT FROM GROUND TO TOP
- FORMWORK PRODUCTIVITY WAS MAXIMIZED
- POURED 51 FLOORS IN 53 WEEKS

BUILDINGS ABOVE 240' IN HIGH SEISMIC REGIONS

- SEISMIC RESTRICTIONS TRIGGERED AT 240'
- DUCTILE FRAMES OR DUAL SYSTEMS (DUCTILE FRAMES/SHEAR WALLS) ARE MANDATED BY CODE ABOVE 240'
- ALTERNATIVELY, SHEAR WALLS CAN BE USED IF DUCTILE BEHAVIOR IS PROVEN THROUGH PERFORMANCE BASED ANALYSIS – PEER REVIEW REQUIRED

15,000 PSI COLUMN CONCRETE

- BELIEVED TO BE THE STRONGEST CONCRETE EVER SPECIFIED IN SEATTLE.
- Allows building's shear walls and columns to be smaller than typical towers this size
- SMALLER SHEAR WALLS AND COLUMNS MEAN LARGER FLOOR PLATES AND MORE REAL ESTATE INSIDE THE BUILDING

COLUMN CONCRETE Placement at Slab

POST-TENSIONING INSTITUTE ® <u>Stressing the Stronger Concrete Solution</u>

POST-TENSIONING ADVANTAGES

- THINNER SLABS & SHALLOWER BEAMS
- LONGER SPANS & FEWER COLUMNS
- REDUCED FLOOR TO FLOOR HEIGHT
- BETTER CONTROL OF DEFLECTION & CRACKING
- SMALLER COLUMNS & FOUNDATIONS
- REDUCED SEISMIC LOADS

TOWER SLABS - SERVICE DEFLECTION

10

PT Shrinkage

ASSUME 100' LONG SLAB AS FOLLOWS:	
POST-TENSIONING	175 PSI
CONCRETE STRENGTH	4000 PSI
TEMPERATURE CHANGE	30° F
DRYING SHRINKAGE @ 28 DAYS	.042%

ELASTIC SHORTENING

<u>PL</u>	=	<u>175 (100) (12)</u>	=	.06"
AE		3,605,000		
<u>CREEP</u>				
2 (.06) =				.12"
THERMAL				
(.0000055) (30) (100) (12) =				.20"
DRYING SE	HRIN	KAGE LONG TERM	<u>/</u>	
(.00084) (100) (1	2) =		1.01"
TOTAL				1.39"

R.

-2- 1

Stressing the Stronger Concrete Solution

