Hybrid Precast Concrete Shear Walls for Seismic Regions

Yahya C. (Gino) Kurama, Ph.D., P.E.
Brian J. Smith, Ph.D., P.E.
University of Notre Dame
Civil & Environmental Engineering & Earth Sciences

PTI Convention
Norfolk, Virginia

May 6, 2014
Hybrid Precast Shear Walls

• Precast Concrete Wall Panels with Horizontal Joints
• During Large Earthquake, Gap Opens at Base Joint
 • High Strength Unbonded Post-Tensioning Strands Provides Re-Centering Force
 • Mild (E.D.) Steel Bars Provide Energy Dissipation
Market Need & Research Objectives

• Code Approval of Hybrid Wall System
 — Categorized as “Non-Emulative” Structure
 — Requires Experimental Validation
 — ACI ITG-5.1 Provides Validation Criteria
 — ACI ITG-5.2 Provides Roadmap for Wall Design

• Research Objectives
 — Develop Experimental, Analytical, and Design Validations to Allow for Code Adoption of Hybrid Precast Walls
 — Develop Design Procedure Document for Moderate and High Seismic Regions
Prototype Building & Wall

- Six Test Specimens
- Design Based on Prototype Parking Garage Building
- Seismic Category D in Los Angeles, CA 90045
 - $S_S = 1.500$; $S_1 = 0.640$; $C_S = 0.167$; $R = 6.0$; $C_D = 5.0$
- Base Moment for Full-Scale Wall ~20,000-kip-ft
- Structures Designed with Minimal Over-strength/Over-detailing

Plan View

Courtesy of Consulting Engineers Group (CEG), Texas
Experimental Program

- 0.4 Scaled Test with Two Wall Panels
- Specimen Design Parameters:
 \[\Delta_{wd} = 0.54\% - 0.87\%; \quad \Delta_{wm} = 2.30\% \]
 \[(H_w / L_w = 2.25) \]

ACI Required Drift History

\[\Delta_{wm} = \text{Validation-Level Drift} = 2.3\% \]

\[\Delta_{wm} = 0.90\% \leq 0.80(H_w / L_w) + 0.5 \leq 3.0\% \]
Specimen HW3 - Reinforcement Details

Casting Performed at High Concrete - Springboro, OH Plant
Specimen HW4 - Reinforcement Details

Base Panel

Additional Reinforcement Around Panel Perforations

Block-Out for Panel Perforation
Hysteretic Behavior of Validated Hybrid Walls

HW3: Solid Wall

HW4: Perforated Wall
Damage State of Specimen HW3

\[\Delta_w = +2.95\% \]
Outline

• Introduction & Objectives
• Experimental Program
• Seismic Design Approach
• Analytical Investigation
• Summary and Acknowledgements
Performance Objectives

• Design-Level Drift
 - Gap Opening at Base Joint
 - Yielding of E.D. Bars
 - PT Steel Linear-Elastic
 - Minor Concrete Cracking
 - Cover Concrete on Verge of Spalling

• Maximum-Level Drift
 - No Significant Gap Opening at Upper Joints
 - No Significant Residual Vertical Wall Uplift Upon Unloading
 - No Significant Slip at Joints
 - No Fracture of E.D. Bars
 - No Fracture or Significant Yielding of PT Steel
 - Confined Core Concrete on Verge of Crushing
Design-Level Drift, Δ_{wd}

Cross-Section

Elevation View of FBD

\[f_{sd} \approx f_{sy} \]

\[f_{pd} \approx 1.1f_{pi} = 0.6f_{pu} \]

\[\Delta_{wd} \]

\[\frac{A_p}{2} f_{pd} \]

\[\frac{A_s}{2} f_{sd} \]

\[0.85f'_c \]

\[c_d \]

\[a_d \]

\[z_d \]

\[L_{w}/2 \]

\[L_{w} \]

\[\beta c_d \]
Maximum-Level Drift, Δ_{wm}

Cross-Section

- Determine Probable Base Moment Strength
- Design Confinement Steel at the Toes
- Satisfy Maximum PT and E.D. Steel Strain Limits to Prevent Fracture

Cross-Section Formulas:

- Δ_{wm}
- N_w, M_{wm}
- $A_p f_{pm}$, $A_s f_{sm}$
- $\gamma_m f_{cc}'$
- $a_m / 2$
- z_m, c_m
- $L_w / 2$
- $a_m = \beta_m c_m$

Maximum-Level Drift Limits:

- $\varepsilon_{sm} \leq 0.85 \varepsilon_{su}$
- $\varepsilon_{pm} \leq 1\%$
Estimation of Steel Strains

\[\delta_p = \Delta_w \left(\frac{L_w}{2} + e_p - c \right) \]

\[\varepsilon_p = \frac{f_{pi}}{E_p} + \frac{\delta_p}{l_p} \]

- \(\Delta_w \): initial strain
- \(\Delta_w \): strain due to gap
Outline

• Introduction & Objectives
• Experimental Program
• Seismic Design Approach
• Analytical Investigation
• Summary and Acknowledgements
Fiber Element Model

- DRAIN-2DX Program
- Concrete Wall Panels
 - Fiber Beam-Column Elements
- Unbonded PT Steel
 - Truss Elements
- E.D. Steel
 - Truss Elements
Lateral Load versus Deflection Behavior

Measured

Analytical
Gap Opening Displacements

Measured

Analytical

\(\Delta_w = 2.30\% \)

\[\text{Gap Opening Disp. at Wall Ends (in.)} \]

\[\text{Drift, } \Delta_w (\%) \]

\(\Delta_w = 2.30\% \)

\[\text{Gap Opening Disp. at Wall Ends (in.)} \]

\[\text{Drift, } \Delta_w (\%) \]
PT Steel Stresses

Measured

Analytical

Normalized PT Stress

Drift, Δ_w (%)

Initial

Final

HW3 (North Tendon)

Normalized PT Stress

Drift, Δ_w (%)

Initial

Final

HW3 (North Tendon)

Normalized PT Stress

Drift, Δ_w (%)

Initial

Final

HW3 (South Tendon)

Normalized PT Stress

Drift, Δ_w (%)

Initial

Final

HW3 (South Tendon)
MCE Level Dynamic Peak Drift Demands

\[\Delta_{wm} = 2.30\% \] Reasonable for Validation-Level Drift

Unscaled MCE

Scaled MCE
Factors that Affect PT Strain Demands

Factors that affect ϵ_p:
- Wall drift demand, Δ_w
- Wall length, L_w
- PT tendon eccentricity, e_p
- Initial stress, f_{pi}
- Unbonded length, l_p

$$\delta_p = \Delta_w \left(\frac{L_w}{2} + e_p \cdot c \right)$$

$$\epsilon_p = \frac{f_{pi}}{E_p} + \frac{\delta_p}{l_p}$$
Effect of PT Eccentricity and Initial Stress

Max. PT steel strain, ε_p (%)

- $f_{pi} = 0.70f_{pu}$
- $f_{pi} = 0.55f_{pu}$

PT strain limit

Validated design
Summary

• Tested Six 0.4-Scaled Specimens
 - Developed Validation Evidence for Hybrid Walls as Special RC Shear Walls in Seismic Regions
Implications for Unbonded Post-Tensioning

- Large PT Strain Demands Under Extreme Loading
- Strand-Anchorage Systems up to 2% Strain Capacity May be Needed for Seismic Regions

![Graph showing strain vs. eccentricity](image)
Acknowledgements

• **Sponsors**
 - The Charles Pankow Foundation
 - PCI Research & Development Committee
 - High Concrete Group, LLC
 - The Consulting Engineers Group – Texas
 - PCI Central Region
 - University of Notre Dame

• **Advisory Panel**
 - Walt Korkosz - The Consulting Engineers Group, Inc.
 - Ken Baur - High Concrete Group, LLC
 - Neil Hawkins - Univ. of Illinois Urbana-Champaign
 - Dave Dieter - Mid-State Precast, LP

• **Industry Support**
 - Dayton Superior Corp.
 - ECCO Manufacturing
 - Enerpac Precision
 - SURE-LOCK
 - Essve Tech, Inc.
 - Prestress Supply, Inc.
 - Sumiden Wire Products Corp.
 - Summit Engineered Products
 - Ambassador Steel Corp.
Questions?

WEBSITE: hybridwalls.nd.edu