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Hybrid Precast Shear Walls

• Precast Concrete Wall Panels 
with Horizontal Joints

• During Large Earthquake,   
Gap Opens at Base Joint
• High Strength Unbonded  

Post-Tensioning Strands 
Provides Re-Centering Force

• Mild (E.D.) Steel Bars Provide 
Energy Dissipation 
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Market Need & Research Objectives
• Code Approval of Hybrid Wall System

─ Categorized as “Non-Emulative” Structure
─ Requires Experimental Validation
─ ACI ITG-5.1 Provides Validation Criteria
─ ACI ITG-5.2 Provides Roadmap for Wall Design

• Research Objectives
─ Develop Experimental, Analytical, and Design 

Validations to Allow for Code Adoption of Hybrid 
Precast Walls

─ Develop Design Procedure Document for Moderate 
and High Seismic Regions
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Outline

• Introduction & Objectives
• Experimental Program
• Seismic Design Approach
• Analytical Investigation
• Summary and Acknowledgements
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• Six Test Specimens 
• Design Based on Prototype Parking Garage Building
• Seismic Category D in Los Angeles, CA 90045

− SS = 1.500;  S1 = 0.640;  CS = 0.167;  R = 6.0;  CD = 5.0
• Base Moment for Full-Scale Wall ~20,000-kip-ft
• Structures Designed with Minimal Over-strength/Over-detailing

Prototype Building & Wall

Prototype Wall

Plan View 5



• 0.4 Scaled Test with Two Wall Panels
• Specimen Design Parameters: 

∆wd = 0.54% - 0.87%;  ∆wm = 2.30%
(Hw / Lw = 2.25)

Upper Panel
(2nd - 4th Stories)

Foundation

Base Panel
(1st Story)

Gravity Load Jack
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ACI Required Drift History

∆wm = Validation-Level Drift=2.3%

Validation-Level Drift

Experimental Program

Panel Perforation

Applied 
Lateral Load

∆wm = 0.90% ≤ 0.80(Hw / Lw) + 0.5 ≤ 3.0%



Upper Panel

Base Panel

15-in. Unbonded Length

Specimen HW3 - Reinforcement Details

7Casting Performed at High Concrete - Springboro, OH Plant 



Base Panel

Block-Out for 
Panel Perforation

Additional Reinforcement
Around Panel Perforations
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Specimen HW4 - Reinforcement Details
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Hysteretic Behavior of 
Validated Hybrid Walls

HW3:  Solid Wall HW4:  Perforated Wall
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∆w = 
+2.95%

Direction 
of Load

Damage State of Specimen HW3

Direction 
of Load
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Performance Objectives
• Design-Level Drift

- Gap Opening at Base Joint
- Yielding of E.D. Bars
- PT Steel Linear-Elastic
- Minor Concrete Cracking
- Cover Concrete on               

Verge of Spalling

• Maximum-Level Drift
- No Significant Gap Opening     

at Upper Joints 
- No Significant Residual Vertical 

Wall Uplift Upon Unloading
- No Significant Slip at Joints
- No Fracture of E.D. Bars
- No Fracture or Significant 

Yielding of PT Steel
- Confined Core Concrete on 

Verge of Crushing

Idealized Wall Behavior



• Iterative Process to 
Determine:
• E.D. Steel Area
• PT Steel Area

• Fundamental Design 
Principles for 
Partially-Prestressed 
RC Structures
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Design-Level Drift, ∆wd

fpd ≈ 1.1fpi = 0.6fpu

fsd ≈ fsy



• Determine Probable 
Base Moment Strength

• Design Confinement 
Steel at the Toes

• Satisfy Maximum PT 
and E.D. Steel Strain 
Limits to Prevent 
Fracture
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Maximum-Level Drift, ∆wm

εpm ≤ 1%

εsm ≤ 0.85εsu



∆w (    + ep - c)δp = Lw

2
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Estimation of Steel Strains

δp

lp
εp   =           +

fpi

Ep

initial strain

strain due to gap
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• DRAIN-2DX Program 
• Concrete Wall Panels

• Fiber Beam-Column 
Elements 

• Unbonded PT Steel
• Truss Elements

• E.D. Steel
• Truss Elements

Fiber Element Model
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Lateral Load versus Deflection Behavior
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Measured Analytical
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Measured Analytical

Gap Opening Displacements
Gap Opening



PT Steel Stresses
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Measured Analytical
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MCE Level Dynamic Peak Drift Demands

• ∆wm = 2.30% Reasonable for Validation-Level Drift

Unscaled MCE Scaled MCE
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Factors that Affect PT Strain Demands

δp

lp
εp   =           +

fpi

Ep

• Factors that affect εp:
─ Wall drift demand, w

─ Wall length, Lw

─ PT tendon eccentricity, ep

─ Initial stress, fpi

─ Unbonded length, lp

∆w (    + ep - c)δp = Lw

2
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Effect of PT Eccentricity and Initial Stress



• Tested Six 0.4-Scaled Specimens
- Developed Validation Evidence for Hybrid Walls      

as Special RC Shear Walls in Seismic Regions
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Summary

HW4HW3



Implications for Unbonded Post-Tensioning
• Large PT Strain Demands Under Extreme Loading
• Strand-Anchorage Systems up to 2% Strain Capacity 

May be Needed for Seismic Regions

25



• Sponsors
- The Charles Pankow Foundation
- PCI Research & Development Committee
- High Concrete Group, LLC
- The Consulting Engineers Group – Texas
- PCI Central Region 
- University of Notre Dame

• Advisory Panel
- Walt Korkosz - The Consulting Engineers Group, Inc.
- Ken Baur - High Concrete Group, LLC
- Neil Hawkins - Univ. of Illinois Urbana-Champaign
- S.K. Ghosh - S.K. Ghosh Associates, Inc.
- Dave Dieter - Mid-State Precast, LP

• Industry Support
- Dayton Superior Corp.
- ECCO Manufacturing
- Enerpac Precision

SURE-LOCK

- Essve Tech, Inc. 
- Prestress Supply, Inc.
- Sumiden Wire Products Corp.
- Summit Engineered Products
- Ambassador Steel Corp. 26

Acknowledgements



WEBSITE:  


